publications

2018

A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing.
Wang A, Conicella AE, Schmidt HB, Martin EW, Rhoads SN, Reeb AN, Nourse A, Ramirez Montero D, Ryan VH, Rohatgi R, Shewmaker F, Naik MT, Mittag T, Ayala YM, Fawzi NL
EMBO J pii: e97452 (2018). PMID: 29438978.

cited by 2 [Google Scholar]

Screen Shot 2018-04-10 at 11.11.27 AM.png

cited by 1 [Google Scholar]

PDF|PubMED

 

R-spondins can potentiate WNT signaling without LGRs
Lebensohn AM, Rohatgi R.
Elife pii: e33126 (2018). PMID: 29405118.

PDF|PubMED

Screen Shot 2018-04-10 at 11.17.11 AM.png

cited by 3 [Google Scholar]

PDF |PubMED

2017

Multiple ligand binding sites regulate the Hedgehog signal transducer Smoothened in vertebrates.
Byrne EF, Luchetti G, Rohatgi R, Siebold C.
Curr Opin Cell Biol 51:81-88 (2017). PMID: 29268141.

PDF |PubMED

 

Dynamic Remodeling of Membrane Composition Drives Cell Cycle through Primary Cilia Excision.
Phua SC, Chiba S, Suzuki M, Su E, Roberson EC, Pusapati GV, Setou M, Rohatgi R, Reiter JF, Ikegami K, Inoue T. 
Cell 168(1-2):264-279 (2017). PMID: 28086093.

cited by 27 [Google Scholar]

PDF |PubMED

2016

Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling.
Lebensohn AM, Dubey R, Neitzel LR, Tacchelly-Benites O, Yang E, Marceau CD, Davis EM, Patel BB, Bahrami-Nejad Z, Travaglini KJ, Ahmed Y, Lee E, Carette JE, Rohatgi R. 
eLife 5: e21459 (2016). PMID: 27996937.

cited by 8 [Google Scholar]

PDF |PubMED


Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling.
Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EF, Covey DF, Siebold C, Rohatgi R.
elife pii: e20304 (2016). PMID: 27705744.

cited by 26 [Google Scholar]

PDF |PubMED

 

Chromatin-Remodeling Complex SWI/SNF Controls Multidrug Resistance by Transcriptionally Regulating the Drug Efflux Pump ABCB1.
Dubey R, Lebensohn AM, Bahrami-Nejad Z, Marceau C, Champion M, Gevaert O, Sikic BI, Carette JE, Rohatgi R.
Cancer Res 76(19):5810-5821 (2016). PMID: 27503929.

cited by 8 [Google Scholar]

PDF |PubMED

 

In vivo formation of vacuolated multi-phase compartments lacking membranes.
Schmidt HB and Rohatgi R.
Cell Rep 16(5):1228-1236 (2016). PMID: 27452472.

cited by 31 [Google Scholar]

PDF |PubMED

 

Structural basis of Smoothened regulation by its extracellular domains.
Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, Sansom MSP, Newstead S, Rohatgi R, Siebold C.
Nature 535(7613):517-522 (2016). PMID: 27437577.

cited by 61 [Google Scholar]

PDF |PubMED

 

An essential role for Grk2 in Hedgehog signaling downstream of Smoothened. 
Zhao Z, Lee RT, Pusapati GV, Iyu A, Rohatgi R, Ingham PW.
EMBO Rep 17(5):739-52 (2016). PMID: 27113758.

cited by 10 [Google Scholar]

PDF |PubMED

2015

Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling.
Marada S, Navarro G, Truong A, Stewart DP, Arensdorf AM, Nachtergaele S, Angelats E, Opferman JT, Rohatgi R, McCormick PJ, Ogden SK.
PLoS Genet 11(8):e1005473 (2015). PMID: 26291458.

cited by 13 [Google Scholar]

Screen Shot 2018-04-11 at 10.59.40 PM.png

cited by 43 [Google Scholar]

PDF |PubMED

 

Rapid Screening of Gli2/3 Mutants Using the Flp-In System
Niewiadomski P and Rohatgi R.
Methods Mol Bio 1322:125-30 (2015). PMID: 26179044.

PDF |PubMED

 

Measuring Gli2 Phosphorylation by Selected Reaction Monitoring Mass Spectrometry.
Ahrends R, Niewiadomski P, Teruel MN, Rohatgi R.
Methods Mol Bio 1322:105-123 (2015). PMID: 26179041.

PDF |PubMED

 

Measuring Expression Levels of Endogenous Gli Genes by Immunoblotting and Real-Time PCR.
Niewiadomski P and Rohatgi R.
Methods Mol Bio 1322:91-92 (2015). PMID: 26179041.

cited by 1 [Google Scholar]

PDF |PubMED

2014

Location, location, and location: compartmentalization of Hedgehog signaling at primary cilia.
Pusapati GV and Rohatgi R.
EMBO J 33(17):1852-4 (2014). PMID: 25037564.

cited by 7 [Google Scholar]

PDF |PubMED

 

Frontiers in hedgehog signal transduction.
Guerrero I and Rohatgi R.
Semin Cell Dev Biol 33:50-1 (2014). PMID: 24946961.

PDF |PubMED

 

A novel osteogenic oxysterol compound for therapeutic development to promote bone growth: activation hedgehog signaling and osteogenesis through smoothened binding.
Montgomery SR, Nargizyan T, Meliton V, Nachtergaele S, Rohatgi R, Stappenbeck F, Jung ME, Johnson JS, Aghdasi B, Tian H, Weintraub G, Inoue H, Atti E, Tetradis S, Pereira RC, Hokugo A, Alobaidaan R, Tan Y, Hahn TJ, Wang JC, Parhami F. 
Journal of Bone and Mineral Research 29(8):1872-85 (2014). PMID: 24591126.

cited by 24 [Google Scholar]

PDF |PubMED

 

G-protein-coupled receptors, Hedgehog signaling and primary cilia. Seminars in Cell and Developmental Biology.  
Mukhopadhyay S and Rohatgi R. 
EPub prior to print (2014). PMID: 24845016.

cited by 58 [Google Scholar]

PDF |PubMED

 

Tracking the subcellular fate of 20(S)-hydroxycholesterol with click chemistry reveals a transport pathway to the Golgi. 
Peyrot SM, Nachtergaele S, Luchetti G, Mydock-McGrane LK, Fujiwara H, Scherrer D, Jallouk A, Schlesinger PH, Ory DS, Covey DF, Rohatgi R. 
Journal of Biological Chemistry 289(16):11095-11110 (2014). PMID: 24596093.

cited by 12 [Google Scholar]

PDF |PubMED

 

EFCAB7 and IQCE regulate Hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. 
Pusapati GV, Hughes CE, Dorn KV, Zhang D, Sugianto P, Aravind L*, and Rohatgi R*. 
Developmental Cell 28(5):483-496 (2014). PMID: 24582806.

cited by 38 [Google Scholar]

PDF |PubMED

 

Gli protein activity is controlled by multi-site phosphorylation in vertebrate Hedgehog signaling.
Niewiadomski P*, Kong JH, Ahrends R, Ma Y, Humke EW, Khan S, Teruel MN, Novitch BG, Rohatgi R*. 
Cell Reports 6(1):168-81 (2014). PMID: 24373970.

cited by 71 [Google Scholar]

PDF |PubMED

2013

Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. 
Nachtergaele S, Whalen DM, Mydock LK, Zhao Z, Malinauskas T, Krishnan K, Ingham PW, Covey DF, Siebold C*, Rohatgi R*. 
Elife 2:e01340 (2013). PMID: 24171105.

cited by 75 [Google Scholar]

PDF |PubMED

 

Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier.  
Lin YC, Niewiadomski P, Lin B, Nakamura H, Phua SC, Jiao J, Levchenko A, Inoue T, Rohatgi R, Inoue T. 
Nature Chemical Biology 9(7):437-443 (2013).  PMID: 23666116.

cited by 59 [Google Scholar]

PDF |PubMED

 

Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. 
Earhart CM, Hughes CE, Gaster RS, Ooi CC, Wilson RJ, Zhou LY, Humke EW, Xu L, Wong DJ, Willingham SB, Schwartz EJ, Weissman IL, Jeffrey SS, Neal JW, Rohatgi R, Wakelee HA, Wang SX. 
Lab on a Chip. 14(1), 78-88 (2013). PMID: 23969419.

cited by 82 [Google Scholar]

PDF |PubMED

 

Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. 
Carragee EJ, Chu G, Rohatgi R, Hurwitz EL, Weiner BK, Yoon ST, Comer G, Kopjar B. 
Journal of Bone and Joint Surgery 95(17), 1537-45 (2013). PMID: 24005193.

cited by 130 [Google Scholar]

PDF |PubMED

2012

Oxysterols are allosteric activators of the oncoprotein Smoothened. 
Nachtergaele S, Mydock LK, Krishnan K, Rammohan J, Schlesinger PH, 
Covey DF, Rohatgi R.
Nat Chem Biol 8(2):211-20 (2012). PMID: 22231273.

cited by 161 [Google Scholar]

PDF |PubMED

 

A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia.
Dorn K, Hughes CE and Rohatgi R.  
Developmental Cell 23(4):823-35 (2012). PMID: 22981989.

cited by 96 [Google Scholar]

PDF |PubMED

 

Singapore signalling: the 2012 hedgehog pathway cocktail. 
Briscoe J, Rohatgi R. 
EMBO Rep 13(7):580-3 (2012). PMID: 22688966.

cited by 1 [Google Scholar]

PDF |PubMED

2011

Cilia 2010: the surprise organelle of the decade
Smith EF, Rohatgi R.
Sci Signal 4(155):mr1 (2011). PMID: 21224442

cited by 10 [Google Scholar]

PDF |PubMed

2010

The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. 
Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R. 
Genes Dev 24(7):670-82 (2010). PMID: 20360384.

cited by 294 [Google Scholar]

PDF |PubMED

 

Role of lipid metabolism in smoothened derepression in hedgehog signaling.
Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott MP, Banerjee U.
Dev Cell 19(1):54-65 (2010). PMID: 20643350

cited by 81 [Google Scholar]

PDF |PubMed

 

The ciliary membrane. 
Rohatgi R, Snell WJ. 
Curr Opin Cell Biol 22(4):541-6 (2010). PMID: 20399632.

cited by 128 [Google Scholar]

PDF |PubMED

2009

Hedgehog signal transduction by smoothened: pharmacological evidence for a two-step activation process. 
Rohatgi R, Milenkovic L, Corcoran RB, and Scott MP. 
Proceedings of the National Academy of Sciences USA 106(9):3196-201 (2009). PMID: 19218434.

cited by 233 [Google Scholar]

PDF |PubMED

 

Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium.
Milenkovic L, Scott MP, Rohatgi R. 
J Cell Biol. 2009; 187 (3): 365-74

cited by 185 [Google Scholar]

PDF |PubMED

2008

Arrestin Movement in Cilia. 
Rohatgi R, Scott MP. 
Science. 2008; 320 (5884): 1777-1781

cited by 11 [Google Scholar]

PDF |PubMED

2007

Patched1 regulates Hedgehog signaling at the primary cilium. 
Rohatgi R, Milenkovic, Scott MP. 
Science. 2007; 317 (5836): 372-376

cited by 975 [Google Scholar]

PDF |PubMED

 

Patching the gaps in Hedgehog signaling. 
Rohatgi R, Scott MP. 
Nat Cell Bio. 2007; 9 (9): 1005-1009

cited by 192 [Google Scholar]

PDF |PubMED

2006

In vitro reconstitution of cdc42-mediated actin assembly using purified components. 
Ho HY, Rohatgi R, Lebensohn A, Kirschner MW. 
Methods in Enzymology. 2006: 406 174-190

cited by 12 [Google Scholar]

PDF |PubMED

2004

Loss-of-function Analysis of EphA Receptors in Retinotectal mapping. 
Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, Yancopoulos GD, Flanagan JG. 
Journal of Neuroscience. 2004; 24 (10): 2542-2550

cited by 142 [Google Scholar]

PDF |PubMED

 

Toca-1 Mediates Cdc42- Dependent Actin Nucleation by Activating the N-WASP-WIP Complex. 
Ho HY, Rohatgi R, Lebensohn A, Ma L, Li L, Gygi SP, Kirschner MW. 
Cell. 2004; 118 (2): 203-216

cited by 397 [Google Scholar]

PDF |PubMED

2002

The Mechanism of Regulation of WAVE1-induced Actin Nucleation by Rac1 and Nck.
Eden S, Rohatgi R, Podtelejnikov AV, Mann M, and Kirschner MW. 
Nature. 2002; 418 (6899): 790-793

cited by 788 [Google Scholar]

PDF |PubMED

2001

CR16 Forms a Complex with N-WASP in Brain and is a Novel Member of a Conserved Proline-Rich Actin-Binding Protein Family. 
Ho HY, Rohatgi R, Ma L, and Kirschner MW. 
Proceedings of the National Academy of Sciences USA. 2001; 98 (20): 11306-11311

cited by 111 [Google Scholar]

PDF |PubMED

 

Nck and Phosphatidylinositol 4,5 Bisphosphate Synergistically Activate Actin Polymerization Through the N-WASP-Arp2/3 Pathway. 
Rohatgi R, Nollau P, Ho HY, Kirschner MW, and Mayer BJ. 
Journal of Biological Chemistry. 2001; 276 (28): 26448-26452

cited by 395 [Google Scholar]

PDF |PubMED

 

WIP Regulates N-WASP-Mediated Actin Polymerization and Filopodium Formation.
Martinez-Quiles N, Rohatgi R, Anton IM, Medina M, Saville SP, Miki H, Yamaguchi H, Takenawa T, Hartwig JH, Geha RS, Ramesh N. 
Nature Cell Biology. 2001; 3 (5): 484-491

cited by 284 [Google Scholar]

PDF |PubMED

2000

Mechanism of N-WASP Activation by CDC42 and Phosphatidylinositol 4, 5-Bisphosphate. 
Rohatgi R, Ho HY, Kirschner MW. 
Journal of Cell Biology. 2000; 150 (6): 1299-1310

cited by 581 [Google Scholar]

PDF |PubMED

1999

The Interaction Between N-WASP and the Arp2/3 Complex Links Cdc42-Dependent Signals to Actin Assembly. 
Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW. 
Cell. 1999; 97 (2): 221-231

cited by 1283 [Google Scholar]

PDF |PubMED

1998

The Arp2/3 Complex Mediates Actin Polymerization Induced by the Small GTP-Binding Protein Cdc42. 
Ma L, Rohatgi R, Kirschner MW. 
Proceedings of the National Academy of Sciences USA. 1998; 95 (26): 15362-15367

cited by 204 [Google Scholar]

PDF |PubMED

1996

Kinetic and Mechanistic Analysis of Non-Enzymatic, Template-Directed Oligoribonucleotide Ligation. 
Rohatgi R, Bartel DP, Szostak JW. 
Journal of the American Chemical Society. 1996; 118 (14): 3332-3339

cited by 104 [Google Scholar]

PDF |PubMED

 

Non-Enzymatic, Template-Directed Ligation of Oligoribonucleotides is Highly Regioselective for the Formation of 3'-5'-Phosphodiester Bonds
Rohatgi R, Bartel DP, Szostak JW. 
Journal of the American Chemical Society. 1996; 118 (14): 3340-3344

cited by 108 [Google Scholar]