
FOCUS | PersPective

1Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA. 2Departments of Biochemistry and Medicine, 
Stanford University School of Medicine, Stanford, CA, USA. 3Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, 
Oxford, UK. 4These authors contributed equally: Arun Radhakrishnan, Rajat Rohatgi, Christian Siebold. ✉e-mail: arun.radhakrishnan@utsouthwestern.edu; 
rrohatgi@stanford.edu; christian@strubi.ox.ac.uk

The history of the Hedgehog (Hh) signaling pathway provides 
an instructive narrative on how basic research on embryo seg-
mentation in Drosophila ultimately led to the development of 

anticancer drugs used in the clinic today. Ligands that initiate Hh 
signaling in target cells (such as Sonic Hedgehog or SHH in ver-
tebrates) function as paracrine signals to control patterning and 
morphogenesis in most of our tissues during development. After 
embryogenesis, Hh signaling is used to coordinate reparative and 
regenerative responses in many tissues such as the brain, bladder, 
skin and bone. Given these myriad roles, even subtle defects in 
Hh signaling have been implicated in diseases ranging from birth 
defects to cancer. Drugs that inhibit Hh signaling are now used to 
treat patients with basal cell cancer and acute myeloid leukemia.

Research on the mechanisms of Hh signaling1 has often revealed 
new regulatory principles in cell biology. For instance, Hh signal-
ing in vertebrates was unexpectedly shown to depend on primary 
cilia, antenna-like organelles found in most cells in our bodies that 
play many roles in development and physiology2. Cilia function as 
compartments in which signal propagation is linked to the dynamic 
trafficking of components at all levels of Hh signaling, from the 
receptor Patched 1 (PTCH1) to the GLI family of transcriptional 
effectors3. The Hh pathway has served as a valuable model system 
to understand ciliary trafficking and the organization of signaling 
pathways at cilia. This Perspective will focus on the initiating step 
in the vertebrate Hh pathway and how its study is providing fresh 
insights into the role of cholesterol in controlling membrane-based 
signal-transduction events.

Ligands such as SHH are received at the extracellular side by 
PTCH1, a 12-pass transmembrane (TM) protein (Fig. 1). However, 
the Hh signal is transmitted across the plasma membrane by 
Smoothened (SMO), a 7-pass TM protein that belongs to the 
G-protein-coupled receptor (GPCR) superfamily4. PTCH1 inhib-
its SMO; inactivation of PTCH1 by direct binding of SHH allows 
SMO to adopt an active conformation and transmit the Hh signal 
to the cytoplasm. As PTCH1 and SMO do not physically interact, 
this arrangement requires the Hh signal to be transmitted from 
PTCH1 to SMO by a second messenger (Fig. 1). The puzzle of how 
PTCH1 inhibits SMO has remained unsolved for nearly 25 years. 

In this Perspective we describe research from diverse areas that has 
converged to suggest the new concept that the organization of cho-
lesterol in cellular membranes is used as a second messenger to com-
municate the Hh signal between PTCH1 and SMO. PTCH1 uses its 
transporter-like function to diminish a biochemically distinct pool 
of membrane cholesterol, called accessible cholesterol, that activates 
SMO. PTCH1 inactivation by SHH leads to an increase in choles-
terol accessibility, perhaps locally in the membrane of the primary 
cilium, thereby allowing SMO activation and transmission of the 
Hh signal to the cytoplasm. While this model is preliminary, and its 
predictions require further experimental testing, it serves as a use-
ful guide for future research in Hh signaling and, more generally, 
in the role of accessible cholesterol in other membrane-dependent 
processes.

The multiple roles of cholesterol in Hh signaling
Cholesterol is involved in both the biogenesis of ligands in producer 
cells and signal reception in target cells. Ligands that initiate Hh 
signaling are covalently attached to two lipids: a palmitoyl moiety 
at the N terminus and a cholesterol molecule at the C terminus5,6 
(Fig. 1). Seemingly unrelated to its role in Hh ligand biogenesis, 
cholesterol is also required in target cells to receive Hh signals. 
Exposure to inhibitors of late steps in the cholesterol biosynthesis 
pathway during pregnancy can lead to holoprosencephaly, a birth 
defect also seen with genetic or pharmacological inhibition of Hh 
signaling7,8. Human syndromes caused by loss-of-function muta-
tions in enzymes that catalyze late steps in cholesterol biosynthe-
sis (like Smith-Lemli-Opitz Syndrome) are characterized by birth 
defects in tissues that are dependent on Hh signaling during devel-
opment9,10. Indeed, Hh signaling in cultured cells is attenuated by 
loss-of-function mutations in these genes or by the direct depletion 
of cholesterol using methyl-ß-cyclodextrin (MβCD).

Side chain oxysterols bind and activate SMO
Though several exogenous SMO ligands have been identified over 
the years11,12, the identity of the endogenous ligand that medi-
ates SMO activation has remained elusive. An important clue was 
provided by the discovery that side chain oxysterols are sufficient 
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to activate Hh signaling in cultured cells and to induce the accu-
mulation of SMO in primary cilia (just like SHH)13–15. Side chain 
oxysterols are oxygenated metabolites of cholesterol that contain 
hydroxyl or epoxy groups in the sterol’s isooctyl side chain project-
ing from the tetracyclic steroid nucleus (Fig. 1). Oxysterols were 
subsequently shown to directly bind and activate SMO16, leading to 
the proposal that the elusive endogenous ligand for SMO may be a 
sterol. Several cilia-enriched oxysterols have recently been shown to 
influence SMO activity17.

While exogenously added oxysterols can clearly activate SMO 
and Hh signaling, mice lacking oxysterol biosynthetic enzymes 
(even in combination) do not show developmental defects associ-
ated with reduced Hh signaling18. However, these studies are con-
founded by potential transplacental transfer of sterols from the 
mother during development, by redundant biosynthesis pathways 
and by synthesis of some oxysterols by non-enzymatic reactions. 
To address these issues, we conducted a loss-of-function CRISPR 
screen in cultured cells targeting all lipid-related genes (including 
all annotated enzymes assigned to sterol and steroid synthesis path-
ways)19. The screen was purposefully conducted under conditions 
designed to block cholesterol uptake from the media, thereby forc-
ing cells to depend on their endogenous sterol synthesis pathways. 
No known oxysterol synthesis enzymes were found to be positive 
regulators of Hh signaling. By contrast, multiple enzymes at both 
early and late steps in the post-squalene pathway for cholesterol bio-
synthesis were identified as positive regulators. This focused screen 
implicates cholesterol itself, rather than a precursor or product ste-
rol, as a requirement for Hh signaling in target cells.

The second piece of evidence that implicates cholesterol (rather 
than an oxysterol) is the observation that depletion of sphingomy-
elin (SM) potentiates Hh signaling in cultured cells. SM is known 
to form complexes with cholesterol, thereby sequestering choles-
terol from other proteins (further discussed below)20–23. Depletion 

of SM would liberate cholesterol from SM–cholesterol complexes 
to promote SMO signaling. Importantly, oxysterols do not form 
such complexes with SM, and therefore SM depletion would not 
be expected to increase oxysterol access to SMO23. Taken together, 
data from structural studies, human genetics, CRISPR screens and 
manipulations of SM levels in cells all point to cholesterol as the 
endogenous sterol that mediates SMO activation. Oxysterols may 
play a role in modulating SMO activity and Hh signaling in specific 
oncogenic or metabolic contexts17.

Activation of SMO by cholesterol
Cholesterol is required for the proper function of many mem-
brane proteins, including GPCRs. One striking example is the 
oxytocin receptor, whose affinity for its peptide ligand is reduced 
by ~80-fold when membrane cholesterol is depleted by MβCD24. 
However, although cholesterol can promote receptor stability or 
a specific receptor conformation, it is not sufficient on its own 
to activate signaling, which still requires an agonist. By contrast, 
two groups independently made the surprising observation that 
cholesterol can serve as a bona fide agonist for SMO25–27. A crys-
tal structure of SMO unexpectedly revealed a cholesterol molecule 
bound to a hydrophobic groove in the extracellular cysteine-rich 
domain (CRD)25 (Fig. 2a,b). This same CRD groove also binds to 
oxysterols28–30. Cholesterol delivery to cells using MβCD as a car-
rier was sufficient to activate Hh signaling even in the absence of 
SHH26,27. Structure-guided mutations in residues that mediate 
hydrogen bonding with cholesterol’s 3β-hydroxyl group or inter-
actions with its tetracyclic steroid nucleus resulted in diminished 
signaling responses to SHH in both cultured cells25–27 and mouse 
embryos31, showing that the interaction of cholesterol with the CRD 
was required for endogenous signaling. Interestingly, high-potency 
SMO inhibitors, including the cancer drug Vismodegib, that bind at 
the extracellular end of the transmembrane domain (TMD)11 (here-
after called the TMD1 site, Fig. 2a) induce a conformational change 
that prevents cholesterol from binding to CRD25,32 (Fig. 2c). A report 
has also suggested that cholesterol can be covalently linked to the 
CRD by an ester linkage to an aspartate residue31.

The first structure of cholesterol-bound SMO used a muta-
tion (valine 329 to phenylalanine, Fig. 2b) in the TMD to stabilize 
the protein in an inactive state and improve protein expression25. 
A putative active-state structure of SMO with its native valine 
329 was later solved in complex with two synthetic agonists: a 
small-molecule SMO agonist (SAG) bound to the TMD1 site and 
a nanobody bound to intracellular loops33 (Fig. 2d). This structure 
confirmed the presence of a cholesterol bound to the CRD, but it 
also revealed a second cholesterol molecule bound at the center of 
the TMD (hereafter called the TMD2 site, Fig. 2a) at a position just 
below (and abutting) the SAG-binding site (Fig. 2d). Two putative 
active-state structures of SMO have been reported in the absence 
of SAG. One structure confirmed sterol binding to the CRD and 
suggested a tunnel through the center of the TMD (which encom-
passes the TMD1 and TMD2 sites) but did not find a bound sterol 
in the TMD2 site34. A second structure of SMO in complex with 
a heterotrimeric G-protein obtained by cryo-EM suggested the 
presence of a ligand in the SMO TMD (Fig. 2e), though the low 
resolution makes both the identity and the position of this ligand 
uncertain35. All of these putative active-state structures of SMO sug-
gest that sterol binding to SMO can lead to the outward movement 
of TM5 and TM6 helices on the cytoplasmic face (dotted arrows 
in Fig. 2d,e), a conformational change associated with activation in 
other GPCRs33–35.

The question of which of the three ligand-binding sites in SMO 
(Fig. 2a) is regulated by PTCH1 during the course of endogenous 
signaling remains uncertain. Mutations in the TMD1 site do not 
impair SMO regulation by PTCH1 (ref. 36). However, mutations 
in both the CRD and the TMD2 sites impair signaling by SHH, so 
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protein.
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either (or both) may accommodate a sterol agonist regulated by 
PTCH1 (refs. 25–27,33). Point mutations in the CRD site also prevent 
SMO signaling during development, mimicking the effect of a com-
plete SMO knockout31. Finally, experiments using a cholesterol ana-
log containing an azide group on its isooctyl side chain showed that 
PTCH1 activity negatively regulates sterol access to the CRD31. The 
most compelling evidence that the TMD2 binding site is regulated 
by PTCH1 comes from analysis of a truncation mutant of SMO 
entirely lacking the CRD (ΔCRD-SMO). This mutant has high con-
stitutive signaling activity because CRD interactions with the TMD 
stabilize the inactive state of SMO25. However, a small but repro-
ducible SHH response is still observed in Smo−/− cells expressing 
ΔCRD-SMO, and the overexpression of PTCH1 beyond physiologi-
cal levels can suppress its constitutive signaling activity25,29,30,37. Sterol 
binding to both the CRD and TMD2 sites may be required for full 
SMO activation, allowing SMO to respond in a switch-like fashion 
to changes in cholesterol abundance. Ordered binding is also a pos-
sibility, with one site occupied at low SHH concentration and both 
at high SHH concentrations. Finally, one of the sterol-binding sites 
may be constitutively occupied to promote SMO stability or traf-
ficking, and the second one may be regulated by PTCH1. Despite 
the uncertainty surrounding the roles of the various sterol-binding 
sites, the key conclusion from both functional and structural stud-
ies is that SMO can be activated by both cholesterol and oxysterols.

PTCH1 as a sterol transporter
More than 20 years ago, PTCH1 was noted to have sequence simi-
larity to Niemann–Pick C1 (NPC1), a lysosomal membrane pro-
tein that transports cholesterol from the lumen of the lysosome 
to the limiting lysosomal membrane for delivery to other cel-
lular destinations38,39 (Fig. 3a). Both PTCH1 and NPC1 contain a 

sterol-sensing domain (SSD), a module composed of five TM heli-
ces, which is found in several other proteins that handle or sense 
cholesterol40 (Fig. 3a). PTCH1 and NPC1 are distantly related to the 
resistance-nodulation-division (RND)-family of pumps, which uses 
transmembrane proton gradients to efflux toxic hydrophobic mol-
ecules out of Gram-negative bacteria41.

Structures of PTCH1 and NPC1 suggest models for how they 
may transport cholesterol42–53. Both PTCH1 and NPC1 structures 
identified a tunnel through the protein that may serve as a conduit 
for sterol transport (Fig. 3b,c). Sterol-like densities have been iden-
tified at various positions throughout the tunnel in both proteins 
and may represent transport intermediates. The transport path is 
better defined for NPC1, in which the directionality of cholesterol 
transport from the lysosomal lumen to the limiting membrane is 
established. Cholesterol is delivered to NPC1 by NPC2, a soluble 
protein that binds cholesterol liberated from lipoprotein particles in 
the lysosome lumen. NPC2 transfers cholesterol to the N-terminal 
domain (NTD, Fig. 3a) of NPC1 (unique to NPC1 and not present 
in PTCH1), which then transfers it to a tunnel that runs through 
the protein to the outer leaflet of the lysosome membrane48,54–57  
(Fig. 3b). Cholesterol molecules are also observed along the analo-
gous tunnel in PTCH1 (Fig. 3c). For both PTCH1 and NPC1, the 
functional importance of the sterol tunnel is suggested by structures 
captured in inactive states43,44,51–53 (Fig. 3d–h). Unlike NPC1, neither 
the directionality of sterol transport nor the identity of the choles-
terol donor or acceptor for PTCH1 is known. PTCH1 could trans-
port cholesterol from the outer leaflet of the plasma membrane to 
a membrane or protein acceptor or receive a cholesterol molecule 
from a donor (like SMO) and transport it to the membrane1.

Taken together, these studies support a shared biochemical func-
tion of PTCH1 and NPC1 and suggest that PTCH1 transports a 
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sterol to regulate SMO. Interestingly, the first functional evidence 
of cholesterol transport by PTCH1 pre-dated the recent flurry of 
PTCH1 structures by several years. A report in 2011 showed that 

PTCH1 could bind cholesterol and efflux a fluorescent cholesterol 
analog (BODIPY–cholesterol) from cells58. More recently, transport 
activity of PTCH1 has been inferred from experiments showing that 
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its activity can reduce the abundance or accessibility of cholesterol 
in both the inner45 and outer19 leaflets of the plasma membrane.

The concept of accessible cholesterol in membranes
To get a semi-quantitative measure of the availability of cholesterol 
to SMO in the plasma membrane, consider that the cross-sectional 
footprint of SMO in a lipid bilayer would be an ellipse with major 
and minor axes lengths of 36.4 and 34 Å, respectively. Using an esti-
mate of 50 Å2 for the average area of a lipid molecule in the plasma 
membrane59, simple geometric considerations predict that ~28 lipid 
molecules would fit in a single layer around SMO (very similar to 
the numbers measured for Rhodopsin in rod outer segments60). If 
cholesterol comprises ~40% of lipids in the vertebrate plasma mem-
brane, the annular lipid shell around SMO in each leaflet would 
contain ~10 molecules of cholesterol (assuming uniform lipid dis-
tribution). How then can SMO activity in cells ever be turned off if 
its TMD is awash in such an abundance of cholesterol?

A potential solution to this conundrum emerges from the large 
body of data showing that plasma membrane cholesterol is orga-
nized into accessible (minor) and inaccessible (major) pools. This 
view has its origins in Leathes’ observation from nearly a century 
ago that the average molecular area of phospholipids in mem-
branes is reduced when cholesterol is present61. This phenomenon, 
called the cholesterol ‘condensing’ effect, subsequently led to the 
proposal that cholesterol and phospholipids form complexes with 
specific stoichiometries20,62. A thermodynamic model of such ‘con-
densed complexes’ has been developed, which accounts for the 
area condensation effects, as well as phase behavior, NMR spectra 
and chemical potentials of membranes containing cholesterol and 
phospholipids20,63,64. Phospholipids vary in their ability to form 
condensed complexes with cholesterol, with the highest propensity 
shown by sphingolipids, followed by glycerophospholipids with 
saturated acyl chains21,65–67.

An important consequence of condensed complex formation 
is the reduction of cholesterol’s chemical activity, a thermody-
namic quantity related to its chemical potential68. In a membrane 
composed of cholesterol and phospholipids, the chemical activity 
of cholesterol generally increases with increasing cholesterol con-
centration (dashed line, Fig. 4a). However, at lower concentrations 
complex formation can suppress cholesterol’s chemical activity 

below that expected in the absence of lipid–lipid interactions (solid 
red line, Fig. 4a). At higher concentrations, when phospholipids 
become limiting, the chemical activity of cholesterol rises, some-
times very sharply (Fig. 4a). The switch point between these two 
regimes is referred to as the ‘equivalence point’ (marked in Fig. 4a), 
as there is neither an excess of cholesterol or of phospholipids at this 
point. The chemical activity determines the rates of loss of choles-
terol from the membrane to soluble acceptors, the extent of binding 
of cholesterol to proteins at the membrane interface, or the ability of 
cholesterol to participate in membrane reactions such as SMO acti-
vation. As all of these scenarios reflect access of cholesterol to pro-
teins, we hereafter use ‘accessible cholesterol’ as a descriptive term 
to refer to the pool of cholesterol that has sharply higher chemical 
activity.

Sharp rises in cholesterol accessibility have been detected in 
model membranes through measurements of cholesterol extrac-
tion by cyclodextrins59,68, oxidation by cholesterol oxidase65,69 and 
binding to cholesterol-dependent cytolysins such as perfringolysin 
O (PFO) or anthrolysin O (ALO)70,71. In all of these measurements, 
the increase in cholesterol accessibility with increasing cholesterol 
concentration was sigmoidal, rather than linear, with little change 
until a threshold concentration was reached (similar to the solid line 
in Fig. 4a). Once the cholesterol content of the membrane exceeded 
this threshold, cholesterol accessibility increased dramatically. 
These same three methods have shown that cholesterol accessibil-
ity in the plasma membranes of cultured cells also rises sharply at 
threshold concentrations72–74. Sphingomyelin (SM), a lipid confined 
to the outer leaflet of the plasma membrane, plays a particularly 
important role in determining cholesterol accessibility due to its 
high affinity for cholesterol. Depletion of SM is commonly used to 
increase cholesterol accessibility at the plasma membrane75.

More recently, studies with PFO*, a mutant version of PFO that 
does not lyse cells at 4 °C, have revealed that plasma membrane 
cholesterol is present in at least three pools: an accessible pool, a 
SM-sequestered pool and a third pool that is sequestered by other 
membrane factors and is essential for membrane integrity75 (Fig. 4b). 
Investigation of these plasma membrane cholesterol pools has been 
greatly aided by the development of a domain of ALO designated as 
ALOD4, which senses accessible cholesterol and is non-lytic even at 
37 °C71,76, and the discovery of a non-lytic fungal toxin, Ostreolysin 
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phospholipids. Above the equivalence point, cholesterol exceeds the sequestering capacity of phospholipids, and its accessibility sharply rises. b, Three 
pools of cholesterol in plasma membranes, along with toxin-based probes that can be used to detect and manipulate the sphingomyelin (SM)-sequestered 
(OlyA) and accessible (ALOD4 or PFO) pools. c, Schematic showing the three cholesterol pools in unperturbed plasma membranes or after cholesterol 
loading or SM depletion.
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A (OlyA), which selectively binds to SM–cholesterol complexes (but 
not to accessible cholesterol or free SM)23,77 (Fig. 4b). Expansion of 
accessible cholesterol levels by cholesterol addition or SM deple-
tion (Fig. 4c), as defined by PFO* or ALOD4 binding, leads to its 
rapid translocation from the plasma membrane to the endoplasmic 
reticulum (ER)75,76. In the ER, accessible cholesterol binds to Scap, a 
cholesterol sensor protein78. This binding terminates the activation 
of lipogenic transcription factors called sterol regulatory element 
binding proteins (SREBPs), leading to reduced cholesterol synthesis 

and uptake and thus restoring cholesterol homeostasis. By restrict-
ing signaling to just the accessible pool, cells are able to maintain 
optimal cholesterol levels in plasma membranes while avoiding 
cholesterol overaccumulation.

The work summarized above provides a framework for how the 
extent of cholesterol binding to SMO could be driven not by its total 
concentration in plasma membranes, but rather by a smaller pool of 
accessible cholesterol that is free of sequestration by SM and other 
membrane factors.
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Regulation of Hedgehog signaling by accessible cholesterol
Increasing cholesterol accessibility in the plasma membrane by 
depleting SM does not change the total cholesterol levels, yet it 
suppresses cholesterol biosynthesis and uptake75,79,80. Conversely, 
sequestering accessible cholesterol in the outer leaflet of the plasma 
membrane with ALOD4 (again without changing total membrane 
cholesterol) induces cholesterol biosynthesis and uptake to restore 
accessible cholesterol to its homeostatic setpoint76. In striking simi-
larity to the Scap-SREBP system, SM depletion potentiates Hh sig-
naling whereas ALOD4 dampens Hh signaling (Fig. 5)19. As these 
perturbations do not change the total cholesterol content of cells, 
we conclude that Hh signaling is also sensitive to the accessible pool 
of cholesterol (Fig. 5b). Importantly, in some cell lines, SM deple-
tion is sufficient to activate Hh signaling even in the absence of 
SHH, further highlighting the direct role of accessible cholesterol 
in signaling19.

How might PTCH1 reduce accessible cholesterol to control the 
activation of SMO? The simplest possibility is that PTCH1, using 
its transporter-like activity, depletes accessible cholesterol to lev-
els below those required for SMO activation, similar to what is 
observed when cholesterol is depleted from plasma membranes 
by MβCD (Fig. 5). A prediction for this model is that the acces-
sible cholesterol set point of a cell, determined approximately by 
the SM-to-cholesterol ratio, will determine the sensitivity of cells to 
SHH. This model explains the observation that the potency of SHH 
is enhanced by either cholesterol loading of cells or SM depletion, 
both of which will increase the cholesterol-to-SM ratio and hence 
the abundance of accessible cholesterol19,26,27 (Fig. 5). This will raise 
the transport burden on PTCH1, and consequently fewer molecules 
of PTCH1 would need to be inactivated by SHH to allow accessible 
cholesterol to rise above the threshold required to activate SMO. If 
PTCH1 is unable to keep up with the additional load of accessible 
cholesterol, the result is constitutive, SHH-independent signaling19.

Regulation of Hh signaling by ciliary cholesterol
The common use of accessible cholesterol to regulate both Hh sig-
naling and cholesterol homeostasis raises a problem: how can the 
outputs of both pathways be independently regulated. For other 
shared second messengers, such as cAMP, this problem is solved 
by spatial segregation. Different pathways change second messenger 
levels in different cellular compartments or locations, which in turn 
also contain the cognate downstream signaling targets. An analo-
gous solution to this problem for the Hh pathway is suggested based 
on the observation that PTCH1 regulates SMO at primary cilia14 
(Fig. 6a). PTCH1 is concentrated in a punctate pattern along the 
membrane of the primary cilium and in a membrane invagination 
around the base of primary cilia known as the ciliary pocket14. SHH 
induces changes in the localization of PTCH1 and SMO: PTCH1 
is inactivated and leaves the cilium, whereas SMO accumulates in 
the ciliary membrane14,81. SMO activation and accumulation in cilia 
are both required to transmit the Hh signal to the cytoplasm, likely 
because the downstream signaling machinery is localized in this 
organelle (Fig. 6a).

Primary cilia have distinct protein and lipid compositions com-
pared to the bulk plasma membrane82. A barrier at the cilia base 
combined with elaborate trafficking systems maintain this distinct 
composition and also allows it to be dynamically altered to regu-
late the activity of cilia-localized proteins. Single-molecule imaging 
showed that the mobility and distribution of PTCH1 and SMO in 
the ciliary membrane can be altered by SHH or by cholesterol deple-
tion with MβCD83. Membranes around flagella (analogs of cilia) 
found in single-cell protists like Paramecium and Trypanosoma 
brucei are enriched in sphingolipids and show a more ordered 
organization similar to those seen in membrane domains with 
condensed cholesterol–sphingolipid complexes84–87. A mutant of 
OlyA (OlyA_E69A) that binds to both cholesterol-complexed and 

cholesterol-free forms of SM revealed that primary cilia in mam-
malian cultured cells also have higher levels of total SM compared 
to the plasma membrane19,23.

If the total amount of cholesterol in ciliary and plasma mem-
branes is the same, elevated SM levels in cilia would reduce the 
abundance of accessible cholesterol in cilia compared to the plasma 
membrane (Fig. 6b). Two observations support the scarcity of acces-
sible cholesterol in the ciliary membrane. First, the membrane of the 
cilium is more resistant to permeabilization by cholesterol-binding 
detergents or toxins compared to the plasma membrane88. Second, 
probes that bind to accessible cholesterol on the plasma membrane 
fail to stain the ciliary membrane in cultured cells19. Most impor-
tantly, inactivation of PTCH1 by SHH leads to an increase in acces-
sible cholesterol at primary cilia19 (Fig. 6c). This last observation 
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provides the critical link that connects the biochemical and struc-
tural evidence implicating cholesterol in PTCH1–SMO regulation 
to the cell biological data identifying primary cilia as the subcellular 
compartment where PTCH1 regulates SMO.

Models for the function of PTCH1 at primary cilia
At equilibrium, the chemical activity or accessibility of cholesterol 
would be expected to be the same throughout the plasma mem-
brane. Thus, despite the observation that SM levels are higher at 
primary cilia, an active transport mechanism would be required to 
maintain a difference in cholesterol accessibility between the ciliary 
and bulk plasma membranes. This concept suggests a ‘pump-leak’ 
model for PTCH1 inhibition of SMO at cilia19 (Fig. 7a). According 
to this model, PTCH1 uses its energy-driven transporter function 
to keep accessible cholesterol levels in the ciliary membrane below 
the threshold required for SMO activation. Excess cholesterol above 
this threshold is transported by PTCH1 to either an intracellular or 
an extracellular acceptor. The pumping action of PTCH1 would be 
opposed by the continual leak of cholesterol back into the ciliary 
membrane down its activity gradient. Consequently, when PTCH1 
is inactivated by SHH, levels of accessible ciliary cholesterol would 
rise and activate SMO (Fig. 7a).

Several alternate models for the function of PTCH1 should be 
considered1,89. One model is suggested by recent structural and func-
tional studies of the NPC1 protein, which shows that the N-terminal 
domain of NPC1 (the NTD, Fig. 3a,b) transfers cholesterol to the 
tunnel through NPC1 for transport to the lysosomal membrane48,49. 
By analogy, the extracellular domain of PTCH1 could accept a 
cholesterol molecule from the SMO CRD and transport it to the 
membrane, which is a direct inactivation mechanism (Fig. 7b).  
Furthermore, PTCH1 could increase ciliary SM or promote SM–
cholesterol interactions. Finally, PTCH1 could promote the expul-
sion of accessible cholesterol in ciliary exovesicles90,91, as such 
vesicles from macrophages are enriched in accessible cholesterol92.

Transbilayer cholesterol distribution in PTCH1–SMO 
regulation
The issue of cholesterol distribution between the two leaflets is 
relevant to SMO activation because there is uncertainty about 
whether cholesterol gains access to SMO from the inner or outer 
leaflet19,33,34,45 (Fig. 5a). In one study, PTCH1 was overexpressed 
throughout the plasma membrane to show that it selectively reduces 
the abundance of inner-leaflet cholesterol45. The authors proposed 
that inactivation of PTCH1 would lead to an increase in inner-leaflet 
cholesterol, which would then move through a gap between two TM 
helices to bind the TMD2 site34. However, the CRD sterol-binding 
site on SMO, perched >10 Å above the membrane, is most likely to 
receive cholesterol from the outer leaflet. Indeed, our work using 
fluorescent PFO* added to intact cells expressing endogenous levels 
of PTCH1 shows that SHH induces an increase in the accessibility 
of outer-leaflet cholesterol at the ciliary membrane19.

These seemingly divergent observations are both consistent with 
PTCH1 inactivation resulting in an overall increase in cholesterol 
accessibility that is manifested in both leaflets. While the steady 
state concentration of total cholesterol may be different between 
the leaflets93–95, the chemical activity of cholesterol is likely similar. 
This is because cholesterol (unlike phospholipids with charged head 
groups) can rapidly flip-flop between the two leaflets of the plasma 
membrane on a subsecond time scale. Maintaining an activity gra-
dient would require an energetically prohibitive active-transport 
mechanism96. Thus, changes in cholesterol activity induced in one 
leaflet, caused by cholesterol loading or depletion, ALOD4 binding 
or SM depletion, are likely to be reflected in both leaflets due to this 
rapid transbilayer movement of cholesterol19 (Fig. 5a).

evolution of the Hh pathway
The many links between Hh signaling and cholesterol (Fig. 1) are 
best explained by the model that Hh signaling evolved from an 
ancient pathway for sensing and pumping sterol-like molecules 
(like hopanoids) in unicellular organisms97,98. Such a pathway would 
have functioned to maintain optimal membrane hopanoid compo-
sition using a combination of a sensor and transporter. A SMO-like 
protein (the sensor) would be activated by an increase in mem-
brane hopanoids and initiate a signaling cascade that upregulates 
the production of a PTCH1-like transporter, which would return 
membrane composition to homeostatic levels (and consequently 
lead to inactivation of the sensor). This regulatory connection 
explains the unique inhibitory interaction between PTCH1 and 
SMO, with PTCH1 being a transporter for the same sterol that acti-
vates SMO (Fig. 1). In addition, the major negative-feedback loop 
in the present-day Hh pathway directly follows the logic of this 
homeostatic pathway: SMO activation induces PTCH1 transcrip-
tion, which feeds back to attenuate SMO activity.

Adaptation of this sensor–transporter module to paracrine cell–
cell communication in multicellular organisms requires a ligand 
secreted by one cell that can regulate the transporter in a neigh-
boring cell. Basler and colleagues have suggested that the simplest  
way to accomplish this is to covalently link the substrate for the 
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transporter to a protein that will sterically block transporter activ-
ity97. Support for this insightful idea comes from recent structural 
studies showing that the cholesterol molecule covalently linked to 
SHH binds to PTCH1 and seems to occlude a conduit for sterol 
transport51,52 (Fig. 3d). The observation that cholesterol is both a 
substrate and (when linked to SHH) an inhibitor of PTCH1 pro-
vides an explanation for the unusual requirement of cholesterol in 
both ligand production and ligand reception.

Conclusions
The work summarized above points to an answer to the longstand-
ing mystery of how PTCH1 inhibits SMO in Hh signaling: PTCH1 
functions as a membrane remodeling machine to inhibit SMO by 
changing the cholesterol composition of the ciliary membrane 
(Fig. 7a). This model provides a unifying explanation for many 
seemingly unrelated clues that have emerged over the last 25 years 
around the PTCH1–SMO interaction, including the role of choles-
terol and oxysterols in SMO activation, the role of primary cilia, and 
the homology of PTCH1 to transporter proteins. We emphasize that 
this model is still provisional, with many aspects based on circum-
stantial evidence, and will require further testing and refinement as 
new data emerge.

Key questions for the future include how PTCH1 regulates 
membrane cholesterol and how the lipid composition of the cili-
ary membrane is regulated. A more general question is how cho-
lesterol accessibility is sensed and then regulated in cells, either in 
the plasma membrane or in specific membrane compartments like 
primary cilia. Answers to these questions could have broad implica-
tions for diverse transmembrane signaling processes in cells.
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