areas of focus

Screen Shot 2018-04-10 at 9.45.53 AM.png


The Hedgehog and WNT pathways, two cell-cell communication systems that regulate the formation of most tissues during development. These same pathways play central roles in tissue stem-cell function and organ regeneration in adults. Defects in these systems are associated with degenerative conditions and cancer.


Signal transduction at the primary cilium and the mechanism of cilia-associated human diseases. Primary cilia are solitary hair-like projections found on most cells in our bodies that function as critical hubs for signal transduction pathways (such as Hedgehog). Over fifty human genetic diseases, called “ciliopathies,” are caused by defects in cilia. Patients with ciliopathies can show phenotypes in nearly all organ systems, suffering from abnormalities ranging from birth defects to obesity.


Regulation of signaling pathways by endogenous lipids. The landscape of endogenous small-molecules and their biological functions remains a terra incognita, one that provides many opportunities to discover new regulatory layers in signaling pathways.


Phase separation in signal transduction. The formation of reversible, membrane-less compartments in cells by the segregation of proteins into liquid phases, hydrogels or amyloid-like assemblies is an emerging principle of cellular organization, with broad implications for areas that include signaling at the cell surface, stress response pathways, and neuro-degeneration.


Cellular adaptation to extreme tissue environments. Many cells in our bodies can be considered “extremophiles,” charged with maintaining homeostasis in the face of an environment containing markedly non-physiological concentrations of ions, small molecules and toxins. For instance, cells in the kidney medulla face tissue concentrations of ions, urea and other small molecules that are several-fold higher than blood.